Discrete Curves

Warmup: Smooth Setting

Univariate curves
WARMUP: SMOOTH SETTING

Univariate curves
- secant
- tangent
- circle
- curvature
- signed curvature

\[\kappa = \frac{1}{r} \]
Gauß Map: $\tilde{n}(s)$

Map to unit circle

- **Shape operator**

 $S = d\tilde{n}$

 $S(\tilde{t}) = \langle d\tilde{n}(\tilde{t}), \tilde{t} \rangle$

 $S\left(\frac{d}{ds}c(s)\right) = \kappa(s)$

Turning Number

Number of orbits in Gauß image

- Different homotopy classes

+1, -1, +2, 0
Turning Number Thm.

For a closed curve

\[\int_C \kappa ds = k \, 2\pi \]

Discrete Setting
Inscribed Polygon: \(p \)

Finite number of vertices
- on curve, ordered
- straight edges

Length

Sum of edge lengths

\[
l(p) = \sum_{i=1}^{n} l_i
\]
Length

Smooth curve
- limit of inscribed polygon lengths

\[
\sup_{p} l(p)
\]

Total Signed Curvature

Sum of turning angles

\[
T_K = \sum_{i=0}^{n} \alpha_i
\]
Discrete Gauß Map

Edges map to points, vertices map to arcs

Turning number well-defined for discrete curves
Turning Number Theorem

Closed curve
- the total signed curvature is an integer multiple of 2π.
- proof: sum of exterior angles

\[
T_\kappa = \sum_{i=1}^{n} \alpha_i = k2\pi
\]

Structure-Preservation

Arbitrary discrete curve
- total signed curvature obeys discrete turning number theorem
- even on a coarse mesh
- can be crucial
 - depending on the application
Convergence

Consider refinement sequence
- length of inscribed polygon to length of smooth curve
- discrete measure approaches continuous analogue
- which refinement sequence?
 - depends on discrete operator
 - pathological sequences may exist

Recall: Total Signed Curvature

Sum of turning angles

\[T_K = \sum_{i=0}^{n} \alpha_i \]
Another Definition

Curvature normal

\[\kappa \hat{n} \]

signed curvature (scalar) unit normal (vector)

Curvature Normal

Gradient of length

- define discrete curvature

\[\nabla L = \kappa \hat{n} \]
GRADIENT OF LENGTH

\[\nabla L_1 \]

\[\pi - \theta \]
Gradient of Length

\[\nabla L_2 + \nabla L_1 \]

\[\pi - \theta \]
\[\nabla L = \kappa \hat{n} = 2 \sin \frac{\theta}{2} \hat{n} \]
Moral of the Story

Structure-preservation

For an arbitrary (even coarse) discrete curve, the discrete measure of curvature obeys the discrete turning number theorem.

Convergence

In the limit of a refinement sequence, discrete measures of length and curvature agree with continuous measures.