Beta Demonstration
Sparse Virtual Texturing

Team 2. Boeing
CSE 498, Collaborative Design

Department of Computer Science and Engineering
Michigan State University

Fall 2009
Project Overview

• Create an OpenSceneGraph plug-in
 – Utilizes sparse virtual texturing techniques
 – Efficiently use high resolution textures

• Create an Application
 – OSG example
 – Demonstrate functionality
Problem

• Using High Resolution Textures
• Graphics Card Requirements
 – Wants entire texture to draw the scene
 – Wants textures that fit in memory

• Current Methods
 – Tedious
 – Inefficient
Solution

• Pre-process Image
 – BSVT format
 – Stream from disc efficiently

• Pre-render Scene
 – Check used parts of texture
 – Stream needed, non-present parts
Solution

- Update Scene Texture
 - Replace present, unused parts
 - Pass updated texture to indirection shader

- Indirection Shader
 - Contains page table
 - References scene texture
 - Corresponds texture coordinate with scene texture
Architecture

CPU

OpenSceneGraph Visual Application

Sparse Virtual Texturing Plug-in

Texture

Database (Managed by OSG)

Readback Shader

GPU

GPU Memory

Indirection Shader
Screen Shot
Screen Shot
Screen Shot
Screen Shot
Building The Page Table

- For each mip level:

 If the page is present in the scene texture:
 - Record its location in the scene texture
 - Set the “bias” to 0

 Otherwise:
 - Iterate through subsequent mip levels until the requested page is present
 - Record lower resolution page's location in the scene texture
 - Record the “bias”